بازه های شمول و غیرشمول برای مقادیر ویژه حقیقی ماتریس های حقیقی

thesis
abstract

تعیین موقعیت مقادیر ویژه ماتریس ها نقش کلیدی در نظریه ماتریس ها و آنالیز عددی دارد. قرص های گرشگورین، بیضی های کاسینی برائر و مجموعه شمول برالدی نمونه های شناخته شده ای از چنین نواحی شمول برای مقادیر ویژه هستند. اخیرا پنا با معرفی خانواده جدیدی از ماتریس های نامنفرد به نام c-ماتریس ها و استفاده از ویژگی های آن ها یک بازه غیرشمول جدید برای مقادیر ویژه حقیقی ماتریس های مثبت به دست آورده است. در این پایان نامه، ابتدا خانواده جدیدی از ماتریس های نامنفرد، به نام mc-ماتریس ها که خانواده c-ماتریس‍ها را دربر دارند، معرفی می شود. با استفاده از خواص این ماتریس ها، بازه های غیرشمول جدیدی برای مقادیر ویژه یک ماتریس حقیقی ارایه می شود که در ادامه بازه های فوق برای تعیین موقعیت مقادیر ویژه حقیقی غیریک از ماتریس های تصادفی مثبت استفاده می شوند. همچنین در این پایان نامه بازه های شمول جدیدی برای قسمتهای حقیقی مقادیر ویژه ماتریس های حقیقی ارایه شده اند. برای ماتریس های که درایه های غیرقطری محدود دارند کران های بالا و پاینی ساده ای از مقادیر ویژه حقیقی به دست آمده اند. بعلاوه شرایطی کافی ارایه شده است که نشان می دهند بازه های شمول به دست آ مده توسط پنا مشمول در بازه های متناظر ارایه شده بوسیله بیضی های کاسینی برائر هستند.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

رده های از ماتریس های نامنفرد و کاربردهای آن ها برای تعیین موقعیت مقادیر ویژه ی حقیقی ماتریس های حقیقی

در ابتدا رده های از ماتریس های نامنفرد ارایه میشود. سپس این ماتریس ها جهت به دست آوردن معیارهایr ساده برای تشخیص نامنفرد بودن ماتریس های حقیقی و همچنین به دست آوردن بازه های شمول و غیرشمول از مقادیر ویژه حقیقی آنها به کار برده می شوند. به ویژه مقادیر ویژه غیر 1 از هر ماتریس تصادفی به طور دقیق تر موقعیت یابی شده است.

15 صفحه اول

محاسبه مقادیر ویژه و بردارهای ویژه یک ماتریس متقارن حقیقی با استفاده از الگوریتم ژنتیک

در بسیاری از کاربردهای عملی که نیاز به محاسبه ی مقادیر ویژه ی یک ماتریس متقارن حقیقی می باشد، تنها محاسبه ی تعداد کمی از مقادیر ویژه، شامل کوچکترین یا بزرگترین مقدار ویژه مورد نیاز است. در این پایان نامه مسئله ی محاسبه ی مقادیر ویژه ی یک ماتریس متقارن حقیقی، به مسئله ی بهینه سازی تبدیل می گردد. سپس با استفاده از الگوریتم ژنتیک به حل آن پرداخته می شود. ابتدا الگوریتم ژنتیک، برای محاسبه ی کوچکتری...

15 صفحه اول

روش های سازنده در حل مساله معکوس مقادیر ویژه حقیقی نامنفی

در این پایان نامه ابتدا شرایط لازم در حل مساله معکوس مقادیر ویژه نامنفی را مطرح و آن در حالت های خاص حل شده بررسی می کنیم سپس به بیان شرایط کافی دارای اثبات های سازنده و پیاده سازی الگوریتم های مربوط در حل مسائل معکوس مقادیر ویژه حقیقی نامنفی و متقارن نامنفی می پردازیم

15 صفحه اول

لزومی حقیقی و لزومی لفظی

ابن‌سینا شرطی لزومی با مقدّم ممکن و شرطی لزومی با مقدّم ممتنع را لزومی به‌حسب نفس‌الامر و لزومی به حسب الزام نامیده، و قسم دوم را در واقع و نفس‌الامر کاذب دانسته است. این حکمْ شگفت بلکه خلاف شهود است و، از این‌رو، نزاع‌های بسیاری در ردّ و قبول آن درگرفته است. در این مقاله، با گزارش انتقادی نزاع‌های یادشده، لزومی حقیقی و لفظی را به زبان منطق جدید و به کمک منطق موجّهات و منطق ربط تحلیل کرده‌ایم و نشان...

full text

احاطه سازی برای مقادیر ویژه ی ماتریس های فاصله اقلیدسی

در این پایان نامه به معرفی ماتریس های فاصله اقلیدسی و خواص آن ها پرداخته و رابطه بین مقادیر ویژه ی ماتریس های فاصله اقلیدسی و مقادیر ویژه ی ماتریس های نیم معین مثبت متناظر مورد بررسی قرار می گیرد. همچنین ترتیب احاطه سازی گروهی معرفی می شودو نیز خواصی از ماتریس های فاصله اقلیدسی کروی بیان می گردد.

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه بناب - دانشکده ریاضی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023